Gating Kinetics of Single Large-Conductance Ca2+-Activated K+ Channels in High Ca2+ Suggest a Two-Tiered Allosteric Gating Mechanism✪

نویسندگان

  • Brad S. Rothberg
  • Karl L. Magleby
چکیده

The Ca2+-dependent gating mechanism of large-conductance calcium-activated K+ (BK) channels from cultured rat skeletal muscle was examined from low (4 microM) to high (1,024 microM) intracellular concentrations of calcium (Ca2+i) using single-channel recording. Open probability (Po) increased with increasing Ca2+i (K0. 5 11.2 +/- 0.3 microM at +30 mV, Hill coefficient of 3.5 +/- 0.3), reaching a maximum of approximately 0.97 for Ca2+i approximately 100 microM. Increasing Ca2+i further to 1,024 microM had little additional effect on either Po or the single-channel kinetics. The channels gated among at least three to four open and four to five closed states at high levels of Ca2+i (>100 microM), compared with three to four open and five to seven closed states at lower Ca2+i. The ability of kinetic schemes to account for the single-channel kinetics was examined with simultaneous maximum likelihood fitting of two-dimensional (2-D) dwell-time distributions obtained from low to high Ca2+i. Kinetic schemes drawn from the 10-state Monod-Wyman-Changeux model could not describe the dwell-time distributions from low to high Ca2+i. Kinetic schemes drawn from Eigen's general model for a ligand-activated tetrameric protein could approximate the dwell-time distributions but not the dependency (correlations) between adjacent intervals at high Ca2+i. However, models drawn from a general 50 state two-tiered scheme, in which there were 25 closed states on the upper tier and 25 open states on the lower tier, could approximate both the dwell-time distributions and the dependency from low to high Ca2+i. In the two-tiered model, the BK channel can open directly from each closed state, and a minimum of five open and five closed states are available for gating at any given Ca2+i. A model that assumed that the apparent Ca2+-binding steps can reach a maximum rate at high Ca2+i could also approximate the gating from low to high Ca2+i. The considered models can serve as working hypotheses for the gating of BK channels.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage and Ca2+ Activation of Single Large-Conductance Ca2+-Activated K+ Channels Described by a Two-Tiered Allosteric Gating Mechanism

The voltage- and Ca2+-dependent gating mechanism of large-conductance Ca2+-activated K+ (BK) channels from cultured rat skeletal muscle was studied using single-channel analysis. Channel open probability (Po) increased with depolarization, as determined by limiting slope measurements (11 mV per e-fold change in Po; effective gating charge, q(eff), of 2.3 +/- 0.6 e(o)). Estimates of q(eff) were ...

متن کامل

Large conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage.

Large conductance Ca2+-activated K+ (BK) channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv) channels characterized by having six (S1-S6) transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0) transmembrane domain that leads to an external NH2-terminus. The BK channel is activ...

متن کامل

Kinetic Structure of Large-Conductance Ca2+-activated K+ Channels Suggests that the Gating Includes Transitions through Intermediate or Secondary States

Mechanisms for the Ca2+-dependent gating of single large-conductance Ca2+-activated K+ channels from cultured rat skeletal muscle were developed using two-dimensional analysis of single-channel currents recorded with the patch clamp technique. To extract and display the essential kinetic information, the kinetic structure, from the single channel currents, adjacent open and closed intervals wer...

متن کامل

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

T-type Ca2+ channels in thalamic sensory gating and affective Disorders

Low threshold Ca2+ currents mediated by T-type channels underlie burst spike activities of relay neurons in the thalamus. We have previously reported that knock-out mice for T-type channels show an enhanced nociceptive response to visceral pain, accompanied by an increase in tonic spikes in the absence of burst spikes in thalamic relay neurons. These results raised a possibility that T-type cha...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of General Physiology

دوره 114  شماره 

صفحات  -

تاریخ انتشار 1999